
SAMGrid Peer-to-Peer Information Service

Matthew Leslie1,2, Siniša Veseli2

1Oxford University Computing Laboratory
2Fermi National Accelerator Laboratory

m.leslie1@physics.ox.ac.uk, veseli@fnal.gov

Abstract
SAMGrid presently relies on the centralised database for pro-

viding several services vital for the system operation. These ser-
vices are all encapsulated in the SAMGrid Database Server, and
include access to file metadata and replica catalogs, dataset and
processing bookkeeping, as well as the runtime support for the
SAMGrid station services. Access to the centralised database and
DB Servers represents a single point of failure in the system and
limits its scalability.

In order to address this issue, we have created a prototype of a
peer-to-peer information service that allows the system to operate
during times when access to the central DB is not available for any
reason (e.g., network failures, scheduled downtimes, etc.), as well
as to improve the system performance during times of extremely
high system load when the central DB access is slow and/or has
a high failure rate. Our prototype uses Distributed Hash Tables to
create a fault tolerant and self-healing service. We believe that this
is the first peer-to-peer information service designed to become a
part of an in-use grid system.

We describe here the prototype architecture and its existing and
planned functionality, as well as show how it can be integrated
into the SAMGrid system. We also present a study of perfor-
mance of our new service under different circumstances. Our re-
sults strongly demonstrate the feasibility and usefulness of the
proposed architecture.

INTRODUCTION
The high energy physics community places stringent de-

mands on its data handling systems. Experiments such as
MINOS, and the D0[2] and CDF[1] detectors at Fermi-
lab generate petabytes of data which must be stored and
made available to physicists for analysis[3]. This is made
more challenging by the international nature of the collab-
orations that analyse this data. The CDF experiment, for
instance, has collaborators in 11 countries on three conti-
nents.

To meet these demands, the SAM-Grid[4] system has
evolved to be both robust and fault tolerant. However, like
many grid systems, it relies heavily on central services.
While some of these services can easily be configured to
failover to (possibly off-site) backups, no such possibility
exists for the central database, which stores all informa-
tion about the SAM-Grid system. This reliance on a sin-
gle database creates two problems, a load bottleneck which
limits scalability, and a single point of failure, which limits
failure tolerance. Here we describe efforts to reduce this

dependency through deploying a scalable and fault tolerant
peer to peer information service.

In sections and we give a brief overview of the existing
SAM-Grid information service, and describe why we feel
a peer to peer replacement is appropriate. We describe re-
cent advances in peer to peer software that power our new
system in section , and how we incorporate them into SAM-
Grid in section . In section , we investigate the performance
of our implementation of this architecture. Finally, in sec-
tion , we discuss the context of this work and offer conclud-
ing remarks.

EXISTING SAM-GRID ARCHITECTURE

The SAM-Grid system offers a wide variety of ser-
vices for data transfer, cataloguing, data storage and pro-
cess bookkeeping in a distributed environment. SAM-Grid
users can create datasets of physics data files based on
metadata attributes, then use the SAM system to manage
the delivery and processing of these files, and finally the
storage of the results.

Two of the main system components are the Station and
the DBServer. It is the station that requests and logs the
delivery of files to user projects, recording which files are
stored on which disks, and managing storage space. To
record and retrieve this data from a persistent store, the
station uses CORBA method calls to communicate with
the DBServer. All SAM-Grid information is stored in
the central database, and so the DBServer must translate
these requests into SQL and pass them on. The results
the database returns are then processed and returned to the
station. The DBServer hides stations from the underlying
database schema, and provides a level of indirection be-
tween the station and the database that we have exploited
in our information service architecture.

MOTIVATION

Although it is possible to run more than one DBServer,
the SAM-Grid design does not allow for more than one
database. This limits both the scalability and the fault toler-
ance of the entire system. Though the Oracle database has
proven reliable, network outages can still bring all off-site
processing to a halt. As eighty percent of the 50 stations
currently running as part of the D0 experiment are hosted



off-site, there is a strong case for a more failure tolerant
information system.

Additionally, the runtime of many SAM-Grid commands
increases significantly during the nightly central database
backups. This illustrates a need for a more scalable infor-
mation system that offers more consistent performance.

To meet these goals, we looked at recent research into
fault tolerant distributed systems, particularly Distributed
Hash Tables(DHTs), which we discuss in detail in the next
section.

DISTRIBUTED HASH TABLES

Distributed hash tables provide a solution to the lookup
problem in distributed systems. Given the name of a data
item stored somewhere in the system, the DHT can deter-
mine which node that data item should be stored on, of-
ten with time complexity logarithmic in the size of the net-
work.

There are many DHT designs available, including
Tapestry[13], CAN[12], Kademlia[10] and Chord[11]. We
chose to implement our information system using Chord.
In Chord, the keyspace can be thought of as being arranged
in a ring. Nodes and data items are assigned IDs within this
keyspace. Each node is responsible for storing the data it is
the first clockwise successor of. In Figure 1, for instance,
node 54 is responsible for data with keys between 40 and
53.

Figure 1: A Chord ring in which Node 10 is looking up key
50. For the purposes of this diagram, keys are between 0
and 100

To provide scalability, each node need only maintain
knowledge of a small proportion of other nodes in the net-
work, including a number of its clockwise successors, its
immediate predecessor, and several fingers at distances one
half, one quarter, one eighth, and so on of the way round
the ring from it. It uses this knowledge to forward requests
for keys it does not own to nodes which are closer to the
requested key. Figure 1 shows how a lookup for key 50
originating at Node 10 might travel between nodes. As the

distance is reduced by a constant fraction at each routing
hop, lookup time are logarithmic in the number of nodes.

Nodes are allowed to join and leave the system at will,
causing churn in the set of nodes in the system. Chord
uses maintenance algorithms to repair routing tables de-
spite node churn. Our information system also needs to
recover from data lost when nodes leave the system. To do
this, we store a number of replicas of all data.

To maintain reliability in the long term, we must replace
the replicas of data that are lost when a node fails. Previous
information system solutions have recommended that soft-
state storage is used, and a central store periodically rein-
serts the data [5]. The bandwidth costs of such a scheme
are high, however, and as SAM-Grid currently stores meta-
data on over a million files, it was felt that looking up and
reinserting all of this data on a regular basis would be pro-
hibitively expensive. Instead, our information service runs
an additional data storage and replication algorithm to effi-
ciently maintain replicas.

SYSTEM ARCHITECTURE

DHTs allow the lookup of data based on a name, such
as a filename, a common use case for the current SAM-
Grid information system. DHTs do not inherently support
complex queries, another use case that SAM-Grid currently
allows. In SAM-Grid, complex searches are triggered by
dataset definitions.

A dataset definition is a set of criteria for file metadata
that defines which files a physicist is interested in analysing
for a particular project. Once a dataset definition is created,
it is then possible to search for the relevant files and store
the result as a snapshot. When this dataset definition is
required in future, the snapshot can be referred to instead
of carrying out the search a second time. This reduces load
on the central database, but also increases the proportion of
operations which can be supported by a DHT.

If snapshots are correctly used, the majority of SAM-
Grid operations can continue without the availability of
complex search. Because of this, we judge that a DHT
based information service would significantly improve the
reliability and scalability of SAM-Grid as a whole.

In order to integrate a Chord DHT with SAM-Grid, we
provide an intermediary information service (IS) that takes
requests from the station and selectively either passes them
to the central DBServer, or uses the Chord Ring to look up
the information.

The basic architecture is shown in Figure 2. Each station
runs its own information service, and these form the Chord
ring. Information such as file metadata is stored in the ring
under a name based on its unique identifier. These names
are then converted by a hash function into a 160 bit Chord
ID. The associated data is then serialised and stored on the
node responsible for that ID. If the data can also be asso-
ciated exclusively with a single station (for instance infor-
mation about that station’s disks) the data is also stored on
the information service belonging to that station. Lookups



IS

IS

IS IS

IS

IS

Central DBServer

Database

Station

Station

Station

Station

Station

Station
Legacy

Station

IS Lookups

Database Lookups

Information Requests

Figure 2: System architecture

for a specific piece of information can then be satisfied by
querying the Chord ring.

When a station requests information, the information
service will first consult the Chord ring. If the information
is not found, the lookup is passed to the central DBServer,
and the results will be both inserted into the ring and re-
turned to the station. Any updates are sent to the ring and
to the database. The central DBServer is able to send up-
dates to the Chord ring if a station contacts it directly.

In order to maintain data consistency if the network is
split, only limited write activity is permitted when the cen-
tral database is not available. Decisions on what data can
be changed or created without centralised coordination are
made on a case by case basis, depending on the data type
being modified. Changes are generally limited to data that
a particular station controls exclusively, so that only a net-
work fragment containing that station may modify that
data. Where changes are made without central control,
temporary updates are at first made in the Chord ring only,
until the database is reactivated and the data can be com-
mitted.

As mentioned in the previous section, we maintain reli-
ability by creating and maintaining a number of replicas of
all objects stored. The number of replicas stored, and the
rate at which data maintenance runs is critical to system
reliability. Using information on the average uptime for a
SAM-Grid station, and the model given in [9], we chose
to configure our system with three replicas and set the data
maintenance algorithm to run every five minutes.

This functionality should be sufficient to remove reliance
on the central database or any specific information service
for the most common station operations, and should also
allow limited station autonomy, so that a station may con-
tinue to process local files without network access.

SYSTEM PERFORMANCE
Our initial implementation of this architecture has

demonstrated excellent performance. To illustrate system
scalability and fault tolerance, we present examples from
a test deployment of a 12 node information service, com-
prised of nodes at Fermilab and in Oxford.

In figure 3, we show the results from scalability tests. We

ran up to 10 simultaneous clients, and recorded the time to
fetch an item that had previously been stored into the Chord
Ring. We compare this with results obtained using the cur-
rent centralised implementation at CDF. The times shown
are averaged over 2000 fetches. The centralised implemen-
tation becomes significantly slower as the number of clients
increases. The bottleneck in this test was database I/O, and
not the DBServer. The Oracle database, must fetch the data
to answer each query sequentially from a single disk array.
Because of this, the centralised version shows poor scala-
bility.

The peer to peer version shows only very slight variation
in fetch times as load increases. Although our new version
is slower than the centralised implementation with only one
client, it is an order of magnitude faster when serving ten
clients.

1 2 4 8 10

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

3.5
3.75

Fetch Time vs System Load

P2P Information 
service
Central Informa-
tion Service

Number of simultaneous clients

Lo
ok

up
 ti

m
e 

(s
ec

on
ds

)

Figure 3: Fetch Performance Against System Load

The system used very little bandwidth, even when main-
taining large quantity of data. Figure 4 shows the outgo-
ing bandwidth from our information system under a work-
load of repeated fetches and stores. The maintenance band-
width usage is initially around 300B/s, increasing to around
500B/s when data is first stored and the data maintenance
algorithm starts to run. As would be expected, outgoing
bandwidth peaks when data is being fetched. Routing data
stores to the appropriate node also requires increased out-
going bandwidth.

15:00 - 16:10

Chord 

Maintenance Only

16:00 - 16:45

Store 2000 

Metadata Items

17:15 - 17:25

Fetch 2000 

Metadata Items

16:00 - 16:45 Store 

2000 Further 

Metadata Items

17:15 - 17:25

Fetch 2000 

Metadata Items

19:15 - 19:55 

Store 2000 Further 

Metadata Items1.0k

0.8k

0.6k

0.4k

0.2k

16:00 17:00 18:00 19:00 20:00 21:00

Figure 4: Bandwidth Usage During System Tests

To assess failure tolerance, monitor the fetch latency of



two clients while simulating the failure of a single node. In
the majority of cases, the failure had no impact on either
client. In other cases, a client was engaged in communi-
cation with the node that failed. This led to a communica-
tion error, triggering a back-off period followed by a retry
- which was always successful.

DISCUSSION

Related Work

A peer to peer replica location service based on Chord is
described in [5]. Our work builds on this by allowing the
storage of all system information. We also offer improved
reliability through the use of data maintenance algorithms,
and propose a mechanism for consistent updates despite the
possibility of network splits.

A great deal of work has also been done on complex
search and range queries in DHTs[6, 8]. Such a system
would make the full functionality of SAM-Grid available
during database downtimes, however we do not currently
consider search to be sufficiently critical to SAM-Grid op-
erations to justify the implementation costs of these de-
signs.

Further Work

Our current implementation of the P2P Information ser-
vice allows for the storage and retrieval of immutable data.
The architecture does allow for mutable data, however, and
an implementation and evaluation of transactional updates
would certainly be an interesting area for further work.

We currently maintain replicas using the DHash mainte-
nance algorithm given by Cates [7], but in future versions,
we would like to use a Dynamic data maintenance algo-
rithm. Dynamic algorithms are more complex, but can of-
fer faster lookup times and improved fault tolerance [9].

Conclusions

We have shown that a peer to peer information service is
feasible, and can be integrated with existing Grid software.
Initial evaluations of the system are promising, showing the
scalability and fault tolerance properties that we hope to
achieve. These very positive results indicate that further
development would be worthwhile.

Acknowledgements

We would like to thank Fermilab Computing Division
for its ongoing support of the SAMGrid project, and espe-
cially the CCF, CEPA, and Run II Departments. We would
also like to thank the UK Particle Physics and Astronomy
Research Council (PPARC) for it’s support of e-science re-
search. Finally, we would like to thank everyone at D0 and
CDF who has contributed to this project.

REFERENCES
[1] The Collider Detector at Fermilab. http://www-cdf.fnal.gov/.

[2] The D0 experiment. http://www-d0.fnal.gov/.

[3] SAM data production plots. http://cdfsam-
prd.fnal.gov/sam local/PlotsAndStats/ProductionPlots/
SamProductionPlots.html.

[4] A. Baranovski et al. SAM-GRID: A system utilizing grid
middleware and sam to enable full function grid computing.
Nucl. Phys. Proc. Suppl., 120:119–125, 2003.

[5] M. Cai, A. Chervenak, and M. Frank. A peer-to-peer replica
location service based on a distributed hash table. In SC,
page 56, 2004.

[6] M. Cai, M. Frank, J. Chen, and P. Szekely. Maan: A multi-
attribute addressable network for grid information services.
In GRID ’03: Proceedings of the Fourth International Work-
shop on Grid Computing, 2003.

[7] J. Cates. Robust and efficient data management for a dis-
tributed hash table. Master’s thesis, Massachusetts Institute
of Technology, May 2003.

[8] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo,
S. Shenker, and I. Stoica. Complex queries in dht-based
peer-to-peer networks. In IPTPS ’01: Revised Papers from
the First International Workshop on Peer-to-Peer Systems,
2002.

[9] M. Leslie. Reliable data storage in distributed
hash tables (preprint submitted for publication).
http://arxiv.org/abs/cs.DC/0507072.

[10] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the XOR metric. In Proceed-
ings of IPTPS02, 2002.

[11] R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications. In ACM SIGCOMM 2001, San Diego, CA,
September 2001.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. Tech-
nical Report TR-00-010, Berkeley, CA, 2000.

[13] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment. IEEE Journal on Selected
Areas in Communications, 22(1):41–53, Jan 2004.


